Colour Correction

Foreground and Background

in Virtual Production

Daniele Siragusano @FilmLight

Please

Before we match Foreground and Background

Calibration the LED Volume

real scene (live plate or photogrammetry)

Avoid those Pitfalls:

- 1. driving the virtual production display in a preset like P3 or Rec.2020
 - 2. calibrate the colours with a spectrometer or colourimeter
 - 3. sending display referred media to the virtual production wall

Instead:

- driving the virtual production display in the native gamut
- calibrating the virtual production display with the production camera
- stream scene-referred image state to the virtual production display

Native gamut

as seen by the virtual production camera

Native gamut

as seen by the virtual production camera

reproduction

No Metamers

$$C_{bg}
eq C_{fg}$$

Fix the lighting

$$C_{fg} = Object * Light$$

change lights until

$$C_{bg}=C_{fg}$$

overall minimisation full-colour match is impractical

Grading to solve the equation

$$f_{grading}(C_{bg}) = C_{fg}$$

Not so fast!

Modify the RT Engine Scene directly until

$$C_{bg}=C_{fg}$$

In theory, the best solution

- works only for objects rendered in RT
- Shader controls can be complex
- RT Engine native controls can lack intuition
- Object colours might be modified by post-process
- slow if you need to modify many objects

Grading to solve the equation

$$f_{grading}(C_{bg}) = C_{fg}$$

includes

$$f_{grading}(\sum_{i}^{n}f_{grading}(C_{bg_{i}}))=\sum_{i}^{n}C_{fg_{i}}$$

Requriements:

- scene-referred pipeline
- physically plausible (additive colour mixture)
- fast and constant to execute
- applicable both on objects and output
- linear light processing
- easy to use
 - predictable
 - fast learning curve
 - operated by none colour experts

the additive mixture of two lights produces a light which falls on a straight line connecting the two lights (in the observer space)

Lens Blur

Lens Blur

Motion Blur

Motion Blur

Gloss

Spill

Some matching experiments

Conclusion

- Linear Light Gains (aka white balance) for a single colour/object/colour location
- Keys, HSV, or scale-based tools distorted the nature of the additive mixture
- perceptual tools are not helpful (additive mixture)
- 3x3 matrix only works for three colours
- XGrade type grade looks like a promising solution

sometimes, the correct solution is not achievable prelighting and colour-matching foreground and background can be speeded up dramatically

Thank You

??? Questions ???